USGS ‘treadmill’ paper repeats bogus claim that ice loss harmed polar bears

The newest polar bear science paper making the rounds courtesy the US Geological Survey, is a perfect example of a statistically-significant result with no biological significance. While the results are rather lame, the paper is dangerous because it repeats the disingenuous claim (see Crockford 2017) that Southern Beaufort Sea polar bear numbers declined in recent years due to summer sea ice loss.

polar_bear_rubble_ice_Mike Lockhart USGS_8 April 2011

The USGS authors (Durner et al. 2017) know this harm-from-summer-ice-loss assertion is not true for the Southern Beaufort subpopulation but the more papers they can get into print that say so, the more likely it will be believed — and the less likely readers will check older literature that documents the recent decline in polar bear numbers was due to a three year period (2004-2006) when thick ice conditions in spring made seal hunting a challenge, a repeat of a well-known phenomenon (e.g. Stirling et al. 1980; Stirling 2002) unique to this region that has been documented since the 1960s.

The Durner paper (USGS press releaseIncreased Sea Ice Drift Puts Polar Bears on Faster Moving Treadmill” published online 6 June ahead of print) spins the research results as potentially significant bad news but in so doing reveals how desperate they have become to make the public and their biology colleagues believe that Southern Beaufort polar bears, among others, are being negatively affected by summer sea ice loss (as per Stirling and Derocher 2012).

Durner, G.M., Douglas, D.C., Albeke, S.E., Whiteman, J.P., Amstrup, S.C., Richardson, E., Wilson, R.R. and Ben-David, M. 2017. Increased Arctic sea ice drift alters adult female polar bear movements and energetics. Global Change Biology. DOI: 10.1111/gcb.13746 http://onlinelibrary.wiley.com/doi/10.1111/gcb.13746/abstract [paywalled]

In fact, the Durner et al. paper does not document any harm to polar bears from the proposed ‘treadmill’ effect of more rapidly moving ice for the period 1999-2013 compared to 1987-1998, but instead uses models to suggest bears might have to eat one to three more seals per year to compensate for the extra energy needed to walk against the moving ice. That’s right: perhaps only 1 more seal per year out of the 50 or so they would usually consume (see Stirling and Øritsland 1995). In my opinion, that’s a pretty lame result for what one of the co-authors described as an immense amount of work.

News outlets have essentially used the USGS press release as a click-bait lede for another round of Trump-bashing with respect to the Paris climate change agreement, see here and here: the stories are hardly about polar bears at all. And predictably, polar bear activist and co-author Steven Amstrup (paid spokesperson for Polar Bears International, famous for their “Save Our Sea Ice” campaign) appears to be using the same approach: an up-coming call-in talk radio program at NPR’s Anchorage affiliate KSKA for Tuesday 13 June at 10:00 (Alaska time, see “Talk of Alaska”) is being billed as a discussion of “polar bears, climate change, and the Paris Accord” (h/t AK geologist).

However, as far as we know since 2006 there hasn’t been another Southern Beaufort thick sea ice event in the critical spring feeding period in this region, which has historically been the biggest threat to polar bear health and survival.

Ironically, since 2013 the Beaufort Gyre has been able to open up the eastern Beaufort pack ice and expand the usual polynya (a recurring area of open water) that is so productive for Arctic seals and whales in spring, a fact documented as such by polar bear biologist Ian Stirling and colleagues in the 1970s (Stirling et al. 1981).

The fact that the Beaufort Gyre has been able to break up the sea ice and move it out of the eastern Beaufort in recent years (which it wasn’t able to do up until 2006) is good news for the marine mammals of that region. A strong Beaufort Gyre and/or somewhat looser pack ice in spring may be the reason that devastating thick ice conditions have not developed in recent years: rather than compact against the shoreline, the Gyre ice keeps moving west along the Alaska coast (see NASA video below).

Note that the video image below is oriented with Banks Island on the bottom and the shore of Alaska along the left-hand side, as if the locator map provided was rotated 90 degree to the right:

Without a repeat of the thick spring ice phenomena (that occurred in 1964-66, 1974-1976, 1984-1986, 1992-1994, and 2004-2006, see Stirling and Lunn 1997), it is likely that Southern Beaufort Sea (SBS) polar bear numbers have continued the increase that began in 2007 as a recovery from the 2004-2006 event, as documented by USGS researchers Bromaghin and colleagues (2015) in their report on the last SBS polar bear count:

“Extensive ice rubble and rafted floes during winter and spring are thought to have led to past declines in polar bear productivity in the SBS as well as during our investigation.”

The fact that this new paper reports polar bears walking east in spring towards the polynya forming behind the Beaufort Gyre shows them moving towards their food source: the ringed and bearded seals (Stirling et al. 1981) that concentrate around the Cape Bathurst polynya.

Bathurst polynya_1975 vs 2015_PolarBearScience

The Cape Bathurst polynya of the eastern Beaufort: at 28 May 1975 (Smith and Rigby 1981:Fig. 14h) compared to 14 May 2015 (Canadian Ice Service).

Note that a recurring polynya also forms in the western Beaufort, a fact known in the 1970s and documented (see below) by Smith and Rigby (1981):

Smith and Rigby 1981_May 1975 map cropped

References

Bromaghin, J.F., McDonald, T.L., Stirling, I., Derocher, A.E., Richardson, E.S., Rehehr, E.V., Douglas, D.C., Durner, G.M., Atwood, T. and Amstrup, S.C. 2015. Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline. Ecological Applications 25(3):634-651. http://onlinelibrary.wiley.com/doi/10.1890/14-1129.1/abstract [paywalled]

Citta, J.J., Quakenbush, L.T., Okkonen, S.R., Druckenmiller, M.L., Maslowski, W., Clement-Kinney, J., George, J.C., Brower, H., Small, R.J., Ashjiang, C.J., Harwood, L.A., and Heide-Jørgensen, M.P. 2015. Ecological characteristics of core-use areas used by Bering–Chukchi–Beaufort (BCB) bowhead whales, 2006–2012. Progress in Oceanography 136:201–222. https://doi.org/10.1016/j.pocean.2014.08.012 Open access.

Crawford, J.A., Quakenbush, L.T. and Citta, J.J. 2015. A comparison of ringed and bearded seal diet, condition and productivity between historical (1975–1984) and recent (2003–2012) periods in the Alaskan Bering and Chukchi seas. Progress in Oceanography 136:133–150.

Crockford, S.J. 2017 V3. Testing the hypothesis that routine sea ice coverage of 3-5 mkm2 results in a greater than 30% decline in population size of polar bears (Ursus maritimus). PeerJ Preprints 2 March 2017. Doi: 10.7287/peerj.preprints.2737v3 Open access. https://doi.org/10.7287/peerj.preprints.2737v3 pdf here.

Dunbar, M.J. 1981. Physical causes and biological significance of polynyas and other open water in sea ice. In: Polynyas in the Canadian Arctic, Stirling, I. and Cleator, H. (eds), pg. 29-43. Canadian Wildlife Service, Occasional Paper No. 45. Ottawa. Pdf of excerpt here.

Durner, G.M., Douglas, D.C., Albeke, S.E., Whiteman, J.P., Amstrup, S.C., Richardson, E., Wilson, R.R. and Ben-David, M. 2017. Increased Arctic sea ice drift alters adult female polar bear movements and energetics. Global Change Biology. DOI: 10.1111/gcb.13746 http://onlinelibrary.wiley.com/doi/10.1111/gcb.13746/abstract [paywalled]

Harwood, L.A., Smith, T.G., George, J.C., Sandstrom, S.J., Walkusz, W. and Divoky, G.J. 2015. Change in the Beaufort Sea ecosystem: Diverging trends in body condition and/or production in five marine vertebrate species. Progress in Oceanography 136:263–273.

Smith, M. and Rigby, B. 1981. Distribution of polynyas in the Canadian Arctic. In: Polynyas in the Canadian Arctic, Stirling, I. and Cleator, H. (eds), pg. 7-28. Canadian Wildlife Service, Occasional Paper No. 45. Ottawa. Pdf of excerpt here.

Stirling, I. 2002. Polar bears and seals in the eastern Beaufort Sea and Amundsen Gulf: a synthesis of population trends and ecological relationships over three decades. Arctic 55 (Suppl. 1):59-76. http://arctic.synergiesprairies.ca/arctic/index.php/arctic/issue/view/42

Stirling, I, Cleator, H. and Smith, T.G. 1981. Marine mammals. In: Polynyas in the Canadian Arctic, Stirling, I. and Cleator, H. (eds), pg. 45-58. Canadian Wildlife Service, Occasional Paper No. 45. Ottawa. Pdf of excerpt here.

Stirling, I, Cleator, H. and Smith, T.G. 1981. Marine mammals. In: Polynyas in the Canadian Arctic, Stirling, I. and Cleator, H. (eds), pg. 45-58. Canadian Wildlife Service, Occasional Paper No. 45. Ottawa. Pdf of excerpt here.

Stirling, I. and Derocher, A.E. 2012. Effects of climate warming on polar bears: a review of the evidence. Global Change Biology 18 (9): 2694-2706 doi:10.1111/j.1365-2486.2012.02753.x http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2012.02753.x/abstract

Stirling, I. and Lunn, N.J. 1997. Environmental fluctuations in arctic marine ecosystems as reflected by variability in reproduction of polar bears and ringed seals. In Ecology of Arctic Environments, Woodin, S.J. and Marquiss, M. (eds), pg. 167-181. Blackwell Science, UK.

Stirling, I. and Øritsland, N. A. 1995. Relationships between estimates of ringed seal (Phoca hispida) and polar bear (Ursus maritimus) populations in the Canadian Arctic. Canadian Journal of Fisheries and Aquatic Sciences 52: 2594 – 2612. http://www.nrcresearchpress.com/doi/abs/10.1139/f95-849#.VNep0y5v_gU

Stirling, I., Schweinsburg, R.E., Kolenasky, G.B., Juniper, I., Robertson, R.J., and Luttich, S. 1980. Proceedings of the 7th meeting of the Polar Bear Specialists Group IUCN/SSC, 30 January-1 February, 1979, Copenhagen, Denmark. Gland, Switzerland and Cambridge UK, IUCN., pg. 45-53.http://pbsg.npolar.no/en/meetings/ pdf of except here.

See additional references here and here.

Comments are closed.