Tag Archives: ringed seal

Amstrup & colleages can’t refute my critique of their 2007 polar bear survival model, Part 2

Polar bear specialists Andrew Derocher and Steven Amstrup recently spent inordinate energy trying to refute the opinion piece I’d written for the Financial Post in celebration of International Polar Bear Day last month, ignoring my fully referenced State of the Polar Bear Report for 2017 that was released the same day (Crockford 2018) and the scientific manuscript I’d posted last year at PeerJ Preprints (Crockford 2017).

polar_bear_USFWS_fat Chukchi Sea bear

Their responses use misdirection and strawman arguments to make points. Such an approach would not work with the scientific community in a public review of my paper at PeerJ, but it’s perfect spin for the self-proclaimed “fact-checking” organization called Climate Feedback. The result is a wildly ineffective rebuttal of my scientific conclusion that Amstrup’s 2007 polar bear survival model has failed miserably.

This is Part 2 of my expose, see Part 1 here.
Continue reading

Svalbard polar bears thrive in part due to ringed seal pups in the spring pack ice

Few people know that Arctic ringed seals (Phoca hispida, aka Pusa hispida) give birth and breed in the offshore pack ice in the spring, as it is seldom mentioned by either seal or polar bear specialists.

While it is true that some ringed seals give birth in stable shorefast ice close to shore, many others give birth well offshore in thick pack ice – where polar bears also live and hunt in the spring but where few Arctic scientists ever venture – and the existence of pack ice breeding ringed seals is one of the reasons that polar bears are such a resilient species.

ringed-seal-in-snow-cave_b-kelly-wikipedia

Ringed seal pup in a snow cave, B. Kelly photo (Wikipedia).

As a consequence, despite fears expressed by Ian Stirling, low shorefast ice and associated snow around Svalbard this winter (and any time in the past) is not necessarily a hindrance to polar bear survival because there are ringed seal pups available out in the surrounding pack ice – where bearded seals also give birth.

Of course, ringed seals pups are also available to Svalbard polar bears in the shorefast ice in the Franz Josef Land archipelago to the east (see map below) but it is the pups born in the offshore pack ice that are of interest here. The existence of pack ice breeding ringed seals may be why Norwegian biologists do not currently monitor ringed seals in the Barents Sea, despite many years of poor ice conditions around Svalbard in spring – this simply is not a species of concern.

barents-sea-ice-2017-feb-6_nis

The fact that distinct ringed seal ecotypes (or habitat-specific morphotypes) exist in the Arctic – one that gives birth and breeds in shorefast ice and another that gives birth and breeds in offshore pack ice, perhaps driven by competition for limited shorefast ice habitat – is a phenomenon a colleague and I discussed in a peer-reviewed book chapter published several years ago. Have a look at the excerpt below and see what you think.

Save

Continue reading

Polar bear habitat update end of April 2016: Plenty of sea ice for feeding

So, here we are near the end of the first month of the Arctic spring and there is still more ice than usual off Labrador and conditions in the Barents Sea are improving daily. The fear-mongers can blather all they like about the potential risks of bears swimming in summer – but spring is the critical season as far as sea ice is concerned for polar bears and all polar bear biologists know it. Polar bears consume 2/3 of all the food they need for the year during April-June and so far, ice conditions are looking just fine.

Cambridge Bay_we re OK_from Joe Prins

There is enough ice where there needs to be ice for polar bears to gorge themselves on new-born ringed and bearded seals – and that’s really all that matters. More ice off Labrador means more hunting ground for the Davis Strait polar bears that depend on the tens of thousands of young harp seals born this year off the Front.

Harp seal pup_DFO Newfoundland
Continue reading

My new Arctic Fallacy paper- Sea ice stability and the polar bear

I have a new paper out that explains a fundamental problem with polar bear conservation.

Chukchi June 15 2014_USGS_Brian Battaile_after swim_sm

I’m convinced that a flawed and out-dated ecological concept — that sea ice, under natural conditions, provides a stable, predictable habitat — is what has allowed the present doom and gloom attitude of most polar bear specialists to develop.

Sea ice changes, of course, from season to season. However, the concept that sea ice is a stable habitat assumes that these seasonal changes are predictable and virtually the same from one year to the next – at least, similar enough that the differences are not responsible for causing marked declines in population size.

The assumption is that under natural, stable conditions populations of Arctic animals will either stay the same over time or increase. Biologists were taught at university that sea ice should be a stable habitat and as a result, they’ve glossed over evidence they collected to the contrary. [see recent posts here and here, for example]

Negative effects on populations of short-term natural variations in spring sea ice or spring snow cover on sea ice have been entirely ignored in modeled predictions of future conditions. The focus has been on summer ice extent.

I have summarized this evidence in a fully referenced, peer-reviewed essay that explores how the acceptance of this fallacy (“sea ice is a stable habitat”) has so skewed the conservation biology of polar bears that to outsiders it may look like a scientific integrity issue.

The summary and the essay are below (with embedded links and references). The Global Warming Policy Foundation (GWPF) has published the essay in their “Briefing Paper” series (#16, The Arctic Fallacy: Sea Ice Stability and the Polar Bear), which includes a must-read foreword by Dr. Matthew Cronin, Professor of Animal Genetics at the University of Alaska Fairbanks. Press release here, pdf here.

I think you’ll find it timely and thought-provoking.

Continue reading

Beaufort Sea polynyas open two weeks before 1975 – open water is good news for polar bears

With masses of very thick, multiyear ice off Alaska this spring, the developing polynyas (open water) at either end of the Beaufort Sea are providing essential polar bear hunting habitat.

SB polynyas on ice thickness map 14 May 2015_PolarBearScience

Patches of open water in the Beaufort Sea are naturally recurring phenomena. This year we have two excellent examples, shown by the yellow arrows in the sea ice thickness map above (from the Naval Research Laboratory).

The eastern-most polynya forms in the Canadian portion of the Beaufort most years in the spring. This open water feature is so common it has a name – the Cape Bathurst polynya. Last year, there wasn’t an obvious polynya there until sometime in June, but in 1975, a patch of open water almost as large (or larger) as this year’s had developed by the end of May (Fig. 1).

Figure 1. Cape Bathurst polynya at 28 May 1975 (Smith and Rigby 1981: Fig. 14h), with the extent probably underestimated, and the polynya this year at 14 May (Canadian Ice Service). Click to enlarge.

Figure 1. Cape Bathurst polynya at 28 May 1975 (Smith and Rigby 1981:Fig. 14h) and the polynya this year at 14 May (Canadian Ice Service). See discussion in the text below about the relative sizes. Click to enlarge.

According to the experts that study them, the timing and extent of the polynya formation depends on wind (Dunbar 1981:29), not temperature. This means that this spring’s polynya formation in the eastern Beaufort isn’t a symptom of global warming, it isn’t missing polar bear habitat,” and it isn’t a sign of early sea ice breakup.

In fact, the Cape Bathurst polynya is a critical place for ringed seals and bearded seals to congregate in spring. Therefore, this is where many Southern Beaufort polar bears go to hunt. The presence of the polynya is especially crucial in years like this one, when very thick sea ice covers most of the Beaufort Sea.  Continue reading

Snow depth over spring sea ice affects polar bear feeding success and ringed seal survival

Snow depth over sea ice in spring affects the hunting success of polar bears on ringed seal (Phoca hispida) pups, but the relationship is more complicated than you might think and there is less data on this phenomenon than you would believe.

Ringed seal lair_snow and ice thickness_PolarBearScience_sm

Regional snow depth in spring (April-May) varies naturally from year to year due to weather patterns driven in part by long-term climate cycles (like the Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation, and the Arctic Oscillation).

This year, it was very cold in Eastern North America, with record-breaking snow fall in some areas. Snow depth was apparently greater than average over Hudson Bay sea ice this spring but was it deep enough to have impaired polar bear hunting success?

Continue reading

Polar bears barely survived the sea ice habitat changes of the last Ice Age, evidence suggests

While the polar bear is an Ice Age species, genetic and fossil evidence suggests it barely survived the profound sea ice changes associated with the Last Glacial Maximum, one of the most severe glacial periods of the Pleistocene.

polar_bear_usfws_no date_sm

A map of sea ice extent at the climax of the Last Glacial Maximum (both perennial and seasonal ice), prepared with the help of a colleague, makes it possible to discuss what genetic and fossil evidence can tell us about the probable effects of glacial conditions on polar bears and ringed seals.

Continue reading